

Technical Specification

PQ60025EGL20

35-75 V Input 2.5 V Output 20 A Current **50 W** Max Power 2000 Vdc

Isolation

Eighth-Brick
DC-DC Converter

The PQ60025EGL20 PowerQor® Giga eighth-brick converter is a next-generation, board-mountable, isolated, fixed switching frequency DC-DC converter that uses synchronous rectification to achieve extremely high conversion efficiency. The power dissipated by the converter is so low that a heatsink is not required, which saves cost, weight, height, and application effort. All of the power and control components are mounted to the multi-layer PCB substrate with high-yield surface mount technology. Since the PowerQor converter has no explicit thermal interfaces, it is extremely reliable. RoHS complaint, see last the page.

PQ60025EGL20 Module

Operational Features

- High efficiency, >87% at full load
- Delivers up to 20 amps of output current with minimal derating
 no heatsink required
- Wide input voltage range: 35V 75V, with 100V 100ms input voltage transient protection
- Fixed frequency switching provides predictable EMI performance
- No minimum load requirement means no preload resistors required

Protection Features

- Input under-voltage lockout disables converter at low Vin conditions
- Output current limit and short circuit protection protects converter and load from permanent damage and consequent hazardous conditions
- Output over-voltage protection protects load from damaging voltages
- Thermal shutdown protects converter from abnormal environmental conditions

Mechanical Features

- Industry standard eighth-brick pin-out configuration
- Industry standard size: 0.90" x 2.3" (22.9x58.4mm)
- Total height only 0.349" (8.9mm), permits better airflow and smaller card pitch
- Total weight: 0.68 oz. (19 grams)
- Flanged pins designed to permit surface mount soldering (avoid wave solder) using FPiP technique

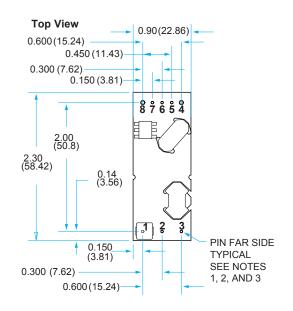
Safety Features

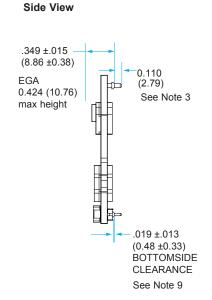
- CAN/CSA C22.2 No. 60950-1
- UL 60950-1
- EN 60950-1

Control Features

- On/Off control referenced to input side (pos & neg logic options available)
- Remote sense for the output voltage compensates for output distribution drops
- Output voltage trim permits custom voltages and voltage margining

Contents


Page	No.
Mechanical Diagrams	. 2
Electrical Characteristics	
Standards Compliance & Qualification Testing	. 5
Figures	. 6
Application Section	
Ordering Information	.14



Open Frame Mechanical Diagram

Input: 35-75 V Output: 2.5 V Current: 20 A

Package: Eighth-Brick

NOTES

- Pins 1-3, 5-7 are 0.040" (1.02mm) diameter with 0.080" (2.03mm) diameter standoff shoulders.
- Pins 4 and 8 are 0.062" (1.57 mm) diameter with 0.100" (2.54 mm) diameter standoff shoulders.
- 3) Other pin extension lengths available. Recommended pin length is 0.03" (0.76mm) greater than the PCB thickness.
- 4) All Pins:

Material - Copper Alloy-

Finish - Matte Tin over Nickel plate

- 5) Undimensioned components are shown for visual reference only.
- 6) All dimensions in inches (mm)

Tolerances: x.xx +/-0.02 in. (x.x +/- 0.5mm)

x.xxx +/-0.010 in. (x.xx +/-0.25mm)

- 7) Weight: 0.68 oz. (19g) typical
- 8) Workmanship: Meets or exceeds IPC-A-610C Class II
- 9) UL/TUV standards require a clearance greater than 0.04" (1.02mm) between input and output for Basic insulation. This issue should be considered if any copper traces are on the top side of the user's board. Note that the ferrite cores are considered part of the input/primary circuit

PIN DESIGNATIONS

Pin	Name	Function	
1	Vin(+)	Positive input voltage	
2	ON/OFF	TTL input to turn converter on and off,	
	ON/OFF	referenced to Vin(-), with internal pull up.	
3	Vin(-)	Negative input voltage	
4	Vout(-)	Negative output voltage	
5	SENSE(-)	Negative remote sense (see note 1)	
6	TRIM	Output voltage trim (see note 2)	
7	SENSE(+)	Positive remote sense (see note 3)	
8	Vout(+)	Positive output voltage	

Notes:

- SENSE(-) should be connected to Vout(-) either remotely or at the converter.
- 2) Leave TRIM pin open for nominal output voltage.
- SENSE(+) should be connected to Vout(+) either remotely or at the converter.

Technical Specifications

Input: 35-75 V Output: 2.5 V Current: 20 A

Package: Eighth-Brick

PQ60025EGL20 Electrical Characteristics

Ta = 25 °C, airflow rate = 300 LFM, Vin = 48Vdc unless otherwise noted; full operating temperature range is -40 °C to +100 °C ambient temperature with appropriate power derating. Specifications subject to change without notice.

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
ABSOLUTE MAXIMUM RATINGS					
Input Voltage					
Non-Operating			100	V	Continuous
Operating			80	V	Continuous
Operating Transient Protection			100	V	100ms transient, square wave
Isolation Voltage (input to output)			2000	V	Basic insulation, Pollution Degree 2
Operating Temperature	-40		100	°C	
Storage Temperature	-55		125	°C	
Voltage at ON/OFF input pin	-2		18	V	
INPUT CHARACTERISTICS					
Operating Input Voltage Range	35	48	75	V	
Input Under-Voltage Lockout					
Turn-On Voltage Threshold	31.5	33.3	34.4	V	
Turn-Off Voltage Threshold	28.5	29.5	30.5	V	
Lockout Voltage Hysteresis	2.4	2.8	3.2	V	
Maximum Input Current			2.0	Α	100% Load, 35 Vin
No-Load Input Current		32		mA	
Disabled Input Current		2	5	mA	
Inrush Current Transient Rating		0.01		A ² s	
Response to Input Transient		150		mV	1000 V/ms input transient
Input Reflected Ripple Current		4.2		mA	RMS thru 10 µH inductor; Figures 13 & 15
Recommended Input Fuse			10	Α	Fast blow external fuse recommended
Input Filter Component Values (L\C)		4.7\1.0		μΗ\μF	Internal values; Figure E
Recommended External Input Capacitance	33	47		μF	Typical ESR 0.1 - 0.2Ω ; Figure 13
OUTPUT CHARACTERISTICS					
Output Voltage Set Point	2.475	2.50	2.525	V	
Output Voltage Regulation					
Over Line		±0.15 \ 3.8	±0.2\5	%\mV	
Over Load		±0.15 \ 3.8	±0.2\5	%\mV	
Over Temperature		±13	±38	mV	
Total Output Voltage Range	2.430		2.570	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; Figures 13 & 16
Peak-to-Peak		70	130	mV	Full load; Figures 13 & 16
RMS		17	30	mV	Full load; Figures 13 & 16
Operating Output Current Range	0		20	Α	Subject to thermal derating; Figures 5 - 8
Output DC Current-Limit Inception	20.5	23.0	26.5	Α	Output Voltage 10% Low; Figure 17
Output DC Current-Limit Shutdown Voltage		1.2		V	
Back-Drive Current Limit while Enabled		0.45		Α	Negative current drawn from output
Back-Drive Current Limit while Disabled		10	50	mA	Negative current drawn from output
Maximum Output Capacitance Electrolytic			35,000	μF	2.5 Vout at 20 A Resistive Load
EFFICIENCY		·			·
100% Load		87		%	Figures 1 - 4
50% Load		89		%	Figures 1 - 4

Technical Specifications

Input: 35-75 V Output: 2.5 V Current: 20 A

Package: Eighth-Brick

PQ60025EGL20 Electrical Characteristics (continued)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 48Vdc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
DYNAMIC CHARACTERISTICS					
Input Voltage Ripple Rejection		72		dB	120 Hz; Fig 20
Output Voltage during Load Current Transient					
For a Step Change in Output Current (0.1 A/ µs)		120		mV	50% to 75% to 50% Iout max; Figure 11
For a Step Change in Output Current (5A/ µs)		180		mV	50% to 75% to 50% Iout max; Figure 12
Settling Time		200		μs	To within 1% Vout nom
Turn-On Transient					
Turn-On Time		8	12	ms	Full Load, Vout=90% nom.; Figs 9 & 10
Start-Up Inhibit Time	180	200	240	ms	-40°C to +125°C; Figure F
Output Voltage Overshoot		0		%	40,000 μF load capacitance, Iout = 0 A
TEMPERATURE LIMITS FOR POWER DERATIN	G CURVES				
Semiconductor Junction Temperature			125	°C	Package rated to 150°C
Board Temperature			125	°C	UL rated max operating temp 130°C
Transformer Temperature			125	°C	See Figures 5 - 8 for derating curves
ISOLATION CHARACTERISTICS					
Isolation Voltage (dielectric strength)		2000		V	
Isolation Resistance		10		ΜΩ	
Isolation Capacitance ²		470		pF	
FEATURE CHARACTERISTICS					
Switching Frequency	220	250	280	kHz	Regulation and Isloation stages
ON/OFF Control (Option P)					
Off-State Voltage	-2		0.8	V	
On-State Voltage	2.4		18	V	
ON/OFF Control (Option N)					
Off-State Voltage	2.4		18	V	
On-State Voltage	-2		0.8	V	
ON/OFF Control (Either Option)					Figures A & B
Pull-Up Voltage		Vin/6	15	V	
Pull-Up Resistance		40		kΩ	
Output Voltage Trim Range	-20		+10	%	Measured across Pins 8 & 4; Figure C
Output Voltage Remote Sense Range			+10	%	Measured across Pins 8 & 4
Output Over-Voltage Protection	120	125	130	%	Over full temp range; % of nominal Vout
Over-Temperature Shutdown		125		°C	Average PCB Temperature
Over-Temperature Shutdown Restart Hysteresis		10		°C	
RELIABILITY CHARACTERISTICS					
Calculated MTBF (Telcordia)		2.5		10 ⁶ Hrs.	TR-NWT-000332; 80% load, 300LFM, 40°C Ta
Calculated MTBF (MIL-217)		1.1			MIL-HDBK-217F; 80% load, 300LFM, 40°C Ta

 $Note \ 1: For applications \ requiring \ reduced \ output \ voltage \ ripple \ and \ noise, \ consult \ SynQor \ applications \ support \ (e-mail: \ support@synqor.com)$

Note 2: Higher values of isolation capacitance can be added external to the module.

Technical Specifications

Input: 35-75 V Output: 2.5 V Current: 20 A

Package: Eighth-Brick

Standards Compliance & Qualification Testing

 Parameter
 Notes & Conditions

 STANDARDS COMPLIANCE

 CAN/CSA C22.2 No. 60950-1

 UL 60950-1

 EN 60950-1

Note: An external input fuse must always be used to meet these safety requirements. Contact SynQor for official safety certificates on new releases or download from the SynQor website.

Parameter	# Units	Test Conditions	
QUALIFICATION TESTING			
Life Test	32	95% rated Vin and load, units at derating point, 1000 hours	
Vibration	5	10-55 Hz sweep, 0.060" total excursion, 1 min./sweep, 120 sweeps for 3 axis	
Mechanical Shock	5	100 g minimum, 2 drops in x, y and z axis	
Temperature Cycling	10	-40 °C to 100 °C, unit temp. ramp 15 °C/min., 500 cycles	
Power/Thermal Cycling	5	Toperating = min to max, Vin = min to max, full load, 100 cycles	
Design Marginality	5	Tmin-10 °C to Tmax+10 °C, 5 °C steps, Vin = min to max, 0-105% load	
Humidity	5	85 °C, 85% RH, 1000 hours, continuous Vin applied except 5 min/day	
Solderability	15 pins	MIL-STD-883, method 2003	

Input: 35-75 V Output: 2.5 V Current: 20 A

Package: Eighth-Brick

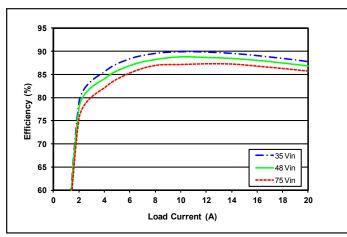


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

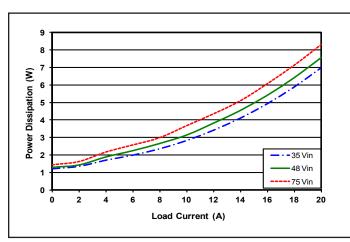


Figure 3: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

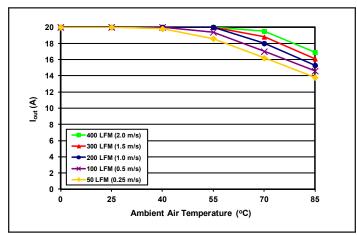


Figure 5: Maximum output power derating curves vs. ambient air temperature for airflow rates of 50 LFM through 400 LFM with air flowing from pin 3 to pin 1 (nominal input voltage).

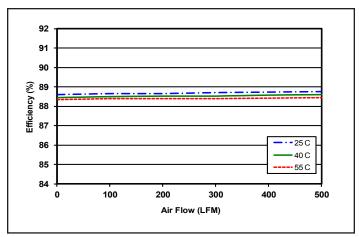


Figure 2: Efficiency at nominal output voltage and 60% rated power vs. airflow rate for ambient air temperatures of 25°C, 40°C, and 55°C (nominal input voltage).

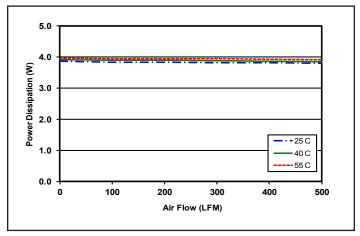


Figure 4: Power dissipation at nominal output voltage and 60% rated power vs. airflow rate for ambient air temperatures of 25°C, 40°C, and 55°C (nominal input voltage).

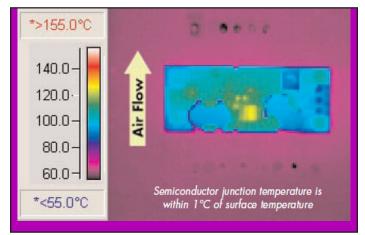


Figure 6: Thermal plot of converter at 20 amp load current with 55°C air flowing at the rate of 200 LFM. Air is flowing across the converter sideways from pin 3 to pin 1 (nominal input voltage).

Input: 35-75 V Output: 2.5 V

Current: 20 A

Package: Eighth-Brick

Figure 7: Maximum output power derating curves vs. ambient air temperature for airflow rates of 0 LFM through 400 LFM with air flowing lenghtwise from input to output (nominal input voltage).

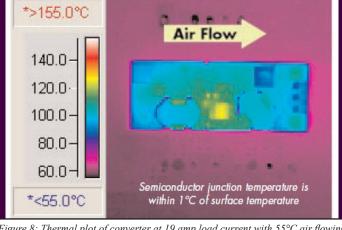


Figure 8: Thermal plot of converter at 19 amp load current with 55°C air flowing at the rate of 200 LFM. Air is flowing across the converter from input to output (nominal input voltage).

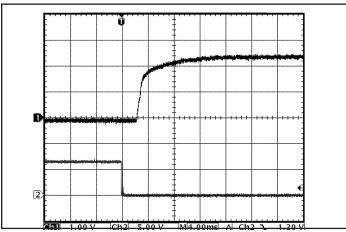


Figure 9: Turn-on transient at full load (resistive load) (4 ms/div). Input voltage pre-applied. Ch 1: Vout (1 V/div). Ch 2: ON/OFF input(5 V/div)

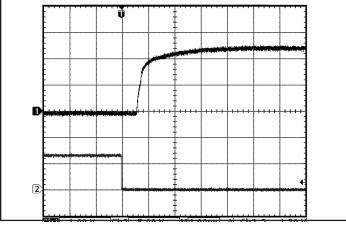


Figure 10: Turn-on transient at zero load (4 ms/div). Ch 1: Vout (1 V/div). Ch 2: ON/OFF input(5 V/div)

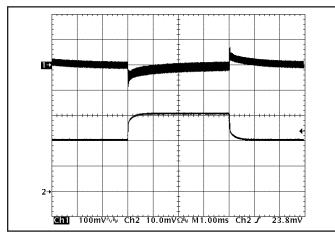


Figure 11: Output voltage response to step-change in load current (50%-75%-50% of lout(max); $dI/dt = 0.1 \ A/\mu s$). Load cap: $10 \ \mu F$, $100 \ m\Omega$ ESR tantalum capacitor and $1 \ \mu F$ cermaic capacitor. Ch 1: Vout (100 mV/div). Ch 2: lout (5 A/div)

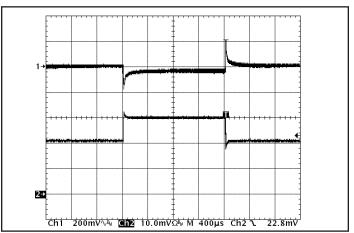


Figure 12: Output voltage response to step-change in load current (50%-75%-50% of lout(max): dI/dt = 5 A/ μ s). Load cap: 470 μ F, 30 $m\Omega$ ESR tantalum capacitor and 1 μ F cermaic capacitor. Ch 1: Vout (200 mV/div). Ch 2: lout (5 A/div)

Input: 35-75 V Output: 2.5 V

Current: 20 A

Package: Eighth-Brick

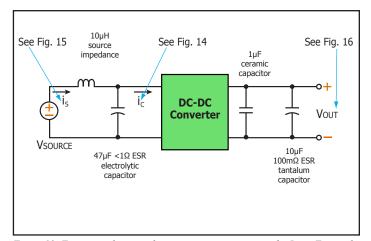


Figure 13: Test set-up diagram showing measurement points for Input Terminal Ripple Current (Figure 14), Input Reflected Ripple Current (Figure 15) and Output Voltage Ripple (Figure 16).

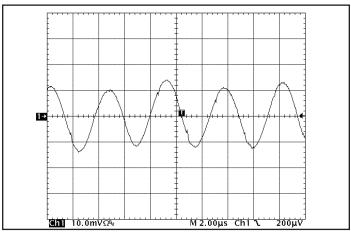


Figure 15: Input reflected ripple current, i_S , through a 10 μH source inductor at nominal input voltage and rated load current (5 mA/div). See Figure 13.

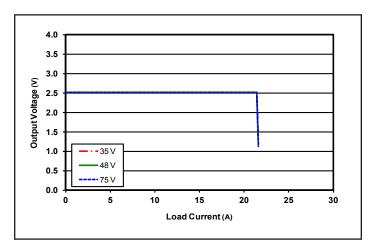


Figure 17: Output voltage vs. load current showing typical current limit curves and converter shutdown points.

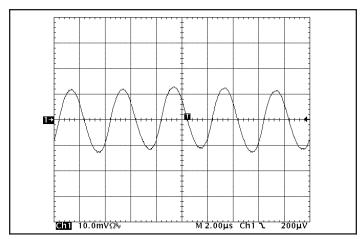


Figure 14: Input Terminal Ripple Current, $i_{\mathcal{C}}$, at full rated output current and nominal input voltage with 10 µH source impedance and 47 µF electrolytic capacitor (200 mA/div). See Figure 13.

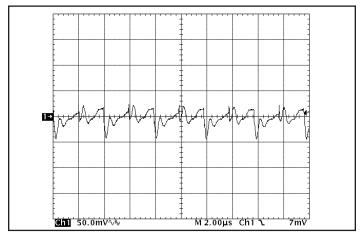


Figure 16: Output voltage ripple at nominal input voltage and rated load current (50 mV/div). Load capacitance: 1 µF ceramic capacitor and 10µF tantalum capacitor. Bandwidth: 20 MHz. See Figure 13.

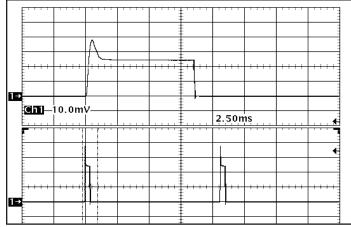


Figure 18: Load current (10 A/div) as a function of time when the converter attempts to turn on into a 10 m Ω short circuit. Top trace (2.5 ms/div) is an expansion of the on-time portion of the bottom trace.

Input: 35-75 V Output: 2.5 V Current: 20 A

Package: Eighth-Brick

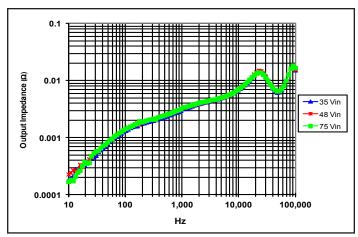


Figure 19: Magnitude of incremental output impedance ($Z_{out} = V_{out}/I_{out}$) for minimum, nominal, and maximum input voltage at full rated power.

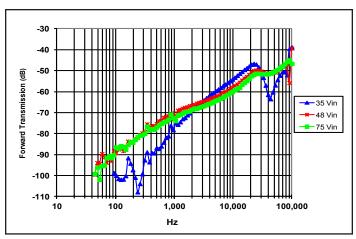


Figure 20: Magnitude of incremental forward transmission ($FT = V_{out}/V_{in}$) for minimum, nominal, and maximum input voltage at full rated power.

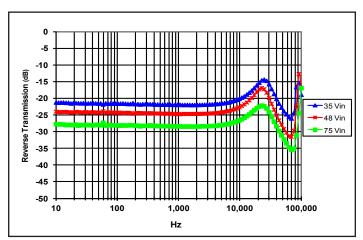


Figure 21: Magnitude of incremental reverse transmission ($RT = I_{in'}I_{out}$) for minimum, nominal, and maximum input voltage at full rated power.

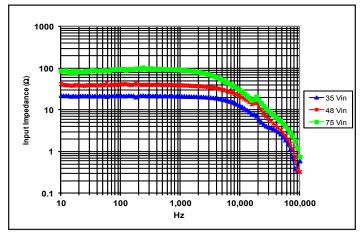


Figure 22: Magnitude of incremental input impedance $(Z_{in} = V_{in}/I_{in})$ for minimum, nominal, and maximum input voltage at full rated power.

Package: Eighth-Brick

BASIC OPERATION AND FEATURES

The PowerQor series converter uses a two-stage power circuit topology. The first stage is a buck-converter that keeps the output voltage constant over variations in line, load, and temperature. The second stage uses a transformer to provide the functions of input/output isolation and voltage step-down to achieve the low output voltage required.

Both the first stage and the second stage switch at a fixed frequency for predictable EMI performance. Rectification of the transformer's output is accomplished with synchronous rectifiers. These devices, which are MOSFETs with a very low onstate resistance, dissipate far less energy than Schottky diodes. This is the primary reason that the *PowerQor* converter has such high efficiency, even at very low output voltages and very high output currents.

Dissipation throughout the converter is so low that it does not require a heatsink for operation. Since a heatsink is not required, the *PowerQor* converter does not need a metal baseplate or potting material to help conduct the dissipated energy to the heatsink. The *PowerQor* converter can thus be built more simply and reliably using high yield surface mount techniques on a PCB substrate.

The *PowerQor* series of eighth-brick, quarter-brick and half-brick converters uses the industry standard footprint and pin-out configuration.

CONTROL FEATURES

REMOTE ON/OFF (Pin 2): The ON/OFF input, Pin 2, permits the user to control when the converter is *on* or *off*. This input is referenced to the return terminal of the input bus, Vin(-). There are two versions of the converter that differ by the sense of the logic used for the ON/OFF input.

In the positive logic version, the ON/OFF input is active high (meaning that a high turns the converter on). In the negative logic version, the ON/OFF signal is active low (meaning that a low turns the converter on). Figure A details five possible circuits for driving the ON/OFF pin. Figure B is a detailed look of the internal ON/OFF circuitry.

REMOTE SENSE(±) (**Pins 7 and 5**): The SENSE(±) inputs correct for voltage drops along the conductors that connect the converter's output pins to the load.

Pin 7 should be connected to Vout(+) and Pin 5 should be connected to Vout(-) at the point on the board where regulation is desired. A remote connection at the load can adjust for a voltage drop only as large as that specified in this datasheet, that is

Pins 7 and 5 must be connected for proper regulation of the output voltage. If these connections are not made, the converter will deliver an output voltage that is slightly lower than its specified value.

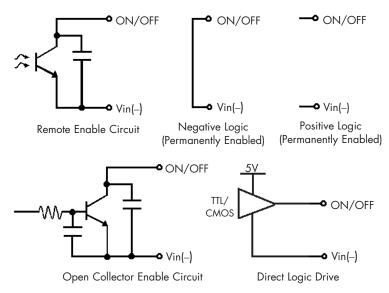


Figure A: Various circuits for driving the ON/OFF pin.

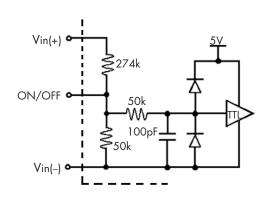


Figure B: Internal ON/OFF pin circuitry

Package: Eighth-Brick

Note: the output over-voltage protection circuit senses the voltage across the output (pins 8 and 4) to determine when it should trigger, not the voltage across the converter's sense leads (pins 7 and 5). Therefore, the resistive drop on the board should be small enough so that output OVP does not trigger, even during load transients.

OUTPUT VOLTAGE TRIM (Pin 6): The TRIM input permits the user to adjust the output voltage across the sense leads up or down according to the trim range specifications.

To decrease the output voltage, the user should connect a resistor between Pin 6 and Pin 5 (SENSE(-) input). For a desired decrease of the nominal output voltage, the value of the resistor should be

$$R_{trim-down} = \left(\frac{511}{\Delta\%}\right) - 10.22 \text{ (k}\Omega)$$

where

$$\Delta\% = \left(\frac{\text{Vnominal} - \text{Vdesired}}{\text{Vnominal}}\right) \times 100\%$$

To increase the output voltage, the user should connect a resistor between Pin 6 and Pin 7 (SENSE(+) input). For a desired increase of the nominal output voltage, the value of the resistor should be

$$R_{\text{trim-up}} = \left(\frac{5.11 V_{\text{OUT}} (100 + \Delta\%)}{1.225 \Delta\%} - \frac{511}{\Delta\%} - 10.22 \right) (k\Omega)$$

where

$$V_{OUT}$$
 = Nominal Output Voltage

Figure C graphs the relationship between the trim resistor value and Rtrim-up and Rtrim-down, showing the total range the output voltage can be trimmed up or down.

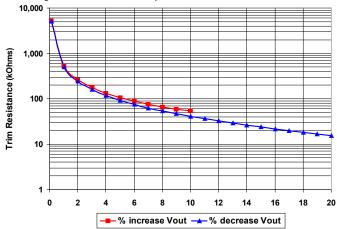


Figure C: Trim Graph for 2.5Vout module

<u>Note</u>: the TRIM feature does not affect the voltage at which the output over-voltage protection circuit is triggered. Trimming the output voltage too high may cause the over-voltage protection circuit to engage, particularly during transients.

It is not necessary for the user to add capacitance at the Trim pin. The node is internally bypassed to eliminate noise.

Total DC Variation of Vout: For the converter to meet its full specifications, the maximum variation of the DC value of Vout, due to both trimming and remote load voltage drops, should not be greater than that specified for the output voltage trim range.

PROTECTION FEATURES

Input Under-Voltage Lockout: The converter is designed to turn off when the input voltage is too low, helping avoid an input system instability problem, described in more detail in the application note titled "Input System Instability". The lockout circuitry is a comparator with DC hysteresis. When the input voltage is rising, it must exceed the typical Turn-On Voltage Threshold value (listed on the specification page) before the converter will turn on. Once the converter is on, the input voltage must fall below the typical Turn-Off Voltage Threshold value before the converter will turn off.

Output Current Limit: The maximum current limit remains constant as the output voltage drops. However, once the impedance of the short across the output is small enough to make the output voltage drop below the specified Output DC Current-Limit Shutdown Voltage, the converter turns off.

The converter then enters a "hiccup mode" where it repeatedly turns on and off at a 5 Hz (nominal) frequency with a 5% duty cycle until the short circuit condition is removed. This prevents excessive heating of the converter or the load board.

Output Over-Voltage Limit: If the voltage across the output pins exceeds the Output Over-Voltage Protection threshold, the converter will immediately stop switching. This prevents damage to the load circuit due to 1) excessive series resistance in output current path from converter output pins to sense point, 2) a release of a short-circuit condition, or 3) a release of a current limit condition. Load capacitance determines exactly how high the output voltage will rise in response to these conditions. After 200 ms the converter will automatically restart.

Over-Temperature Shutdown: A temperature sensor on the converter senses the average temperature of the module. The thermal shutdown circuit is designed to turn the converter off when the temperature at the sensed location reaches the

Package: Eighth-Brick

Over-Temperature Shutdown value. It will allow the converter to turn on again when the temperature of the sensed location falls by the amount of the Over-Temperature Shutdown Restart Hysteresis value.

More detailed information is available in the application note titled "EMI Characteristics" on the SynQor website.

APPLICATION CONSIDERATIONS

Input System Instability: This condition can occur because any DC/DC converter appears incrementally as a negative resistance load. A detailed application note titled "Input System Instability" is available on the SynQor web site (www.synqor.com) which provides an understanding of why this instability arises, and shows the preferred solution for correcting it.

Application Circuits: Figure D below provides a typical circuit diagram which details the input filtering and voltage trimming.

Input Filtering and External Capacitance: Figure E below provides a diagram showing the internal input filter components. This filter dramatically reduces input terminal ripple current, which otherwise could exceed the rating of an external electrolytic input capacitor. The recommended external input capacitance is specified in the "Input Characterisites" section.

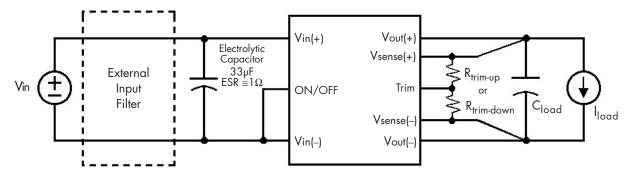


Figure D: Typical application circuit (negative logic unit, permanently enabled).

.....

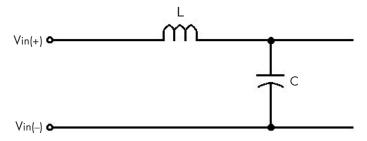


Figure E: Internal Input Filter Diagram (component values listed on page 3).

Package: Eighth-Brick

Startup Inhibit Period: The Startup Inhibit Period ensures that the converter will remain off for at least 200ms when it is shut down for any reason. When an output short is present, this generates a 5Hz "hiccup mode," which prevents the converter from overheating. In all, there are seven ways that the

converter can be shut down, initiating a Startup Inhibit Period:

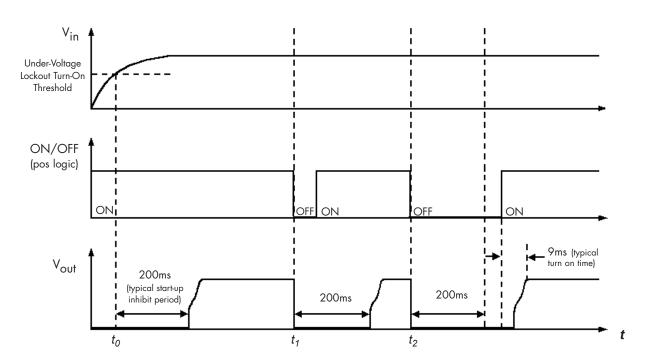
- Input Under-Voltage Lockout
- Input Over-Voltage Shutdown (not present in Eighth-brick)
- Output Over-Voltage Protection
- Over Temperature Shutdown
- Current Limit
- Short Circuit Protection
- Turned off by the ON/OFF input

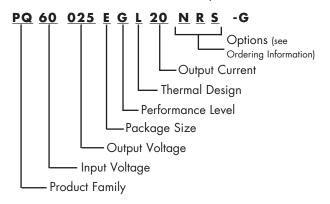
Figure F shows three turn-on scenarios, where a Startup Inhibit Period is initiated at t_0 , t_1 , and t_2 :

Before time t₀, when the input voltage is below the UVL threshold, the unit is disabled by the Input Under-Voltage Lockout feature. When the input voltage rises above the UVL threshold, the Input Under-Voltage Lockout is released, and a Startup Inhibit Period is initiated. At the end of this delay, the ON/OFF pin is evaluated, and since it is active, the unit turns on.

At time t_1 , the unit is disabled by the ON/OFF pin, and it cannot be enabled again until the Startup Inhibit Period has elapsed.

When the ON/OFF pin goes high after t_2 , the Startup Inhibit Period has elapsed, and the output turns on within the typical Turn-On Time.




Figure F: Startup Inhibit Period (turn-on time not to scale)

Package: Eighth-Brick

PART NUMBERING SYSTEM

The part numbering system for SynQor's dc-dc converters follows the format shown in the example below.

The first 12 characters comprise the base part number and the last 3 characters indicate available options. The "-G" suffix indicates 6/6 RoHS compliance.

Application Notes

A variety of application notes and technical white papers can be downloaded in pdf format from our website.

RoHS Compliance: The EU led RoHS (Restriction of Hazardous Substances) Directive bans the use of Lead, Cadmium, Hexavalent Chromium, Mercury, Polybrominated Biphenyls (PBB), and Polybrominated Diphenyl Ether (PBDE) in Electrical and Electronic Equipment. This SynQor product is 6/6 RoHS compliant. For more information please refer to SynQor's RoHS addendum available at our RoHS Compliance / Lead Free Initiative web page or e-mail us at rohs@synqor.com.

ORDERING INFORMATION

The tables below show the valid model numbers and ordering options for converters in this product family. When ordering SynQor converters, please ensure that you use the complete 15 character part number consisting of the 12 character base part number and the additional characters for options. Add "-G" to the model number for 6/6 RoHS compliance.

Model Number	Input	Output	Max Output
	Voltage	Voltage	Current
PQ60025EGw20xyS	35-75 V	2.5 V	20 A

The following options must be included in place of the w x y z spaces in the model numbers listed above.

Options Description: w x y z						
Thermal Design Enable Logic		Pin Style	Feature Set			
L - Low Profile A - Open Frame	N - Negative P - Positive	K - 0.110" N - 0.145" R - 0.180" Y - 0.250"	S - Standard			

Not all combinations make valid part numbers, please contact SynQor for availability. See the $\frac{Product\ Summary\ web\ page}{Product\ Summary\ web\ page}$ for more options.

Contact SynQor for further information and to order:

Phone: 978-849-0600 **Toll Free:** 888-567-9596 **Fax:** 978-849-0602

E-mail:power@synqor.comWeb:www.synqor.comAddress:155 Swanson Road

Boxborough, MA 01719

USA

PATENTS

SynQor holds numerous U.S. patents, one or more of which apply to most of its power conversion products. Any that apply to the product(s) listed in this document are identified by markings on the product(s) or on internal components of the product(s) in accordance with U.S. patent laws. SynQor's patents include the following:

6,896,526 6,927,987 7,050,309 7,085,146 7,765,687 7,787,261 8,149,597 8,644,027

WARRANTY

SynQor offers a three (3) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.